A Model Structure for Quasi-categories
نویسنده
چکیده
Quasi-categories live at the intersection of homotopy theory with category theory. In particular, they serve as a model for (∞, 1)-categories, that is, weak higher categories with n-cells for each natural number n that are invertible when n > 1. Alternatively, an (∞, 1)-category is a category enriched in ∞-groupoids, e.g., a topological space with points as 0-cells, paths as 1-cells, homotopies of paths as 2-cells, and homotopies of homotopies as 3-cells, and so forth. The basic data for a quasi-category is a simplicial set. A precise definition is given below. For now, a simplicial set X is given by a diagram in Set
منابع مشابه
On the structure of simplicial categories associated to quasi - categories
The homotopy coherent nerve from simplicial categories to simplicial sets and its left adjoint C are important to the study of (∞, 1)-categories because they provide a means for comparing two models of their respective homotopy theories, giving a Quillen equivalence between the model structures for quasi-categories and simplicial categories. The functor C also gives a cofibrant replacement for ...
متن کاملSorting protein decoys by machine-learning-to-rank
Much progress has been made in Protein structure prediction during the last few decades. As the predicted models can span a broad range of accuracy spectrum, the accuracy of quality estimation becomes one of the key elements of successful protein structure prediction. Over the past years, a number of methods have been developed to address this issue, and these methods could be roughly divided i...
متن کاملMapping Spaces in Quasi-categories
We apply the Dwyer-Kan theory of homotopy function complexes in model categories to the study of mapping spaces in quasi-categories. Using this, together with our work on rigidification from [DS1], we give a streamlined proof of the Quillen equivalence between quasi-categories and simplicial categories. Some useful material about relative mapping spaces in quasi-categories is developed along th...
متن کاملA generalized asymmetry model for square contingency tables with ordered categories
For square contingency tables with ordered categories, the present paper proposes an asymmetry model with m-additional parameters, which indicates (1) the generalized marginal homogeneity and (2) the structure of quasi-symmetry for cumulative probabilities. The proposed model includes a modified palindromic symmetry model by Iki, Oda and Tomizawa [7]. Also the present paper gives the decomposit...
متن کاملSome aspects of cosheaves on diffeological spaces
We define a notion of cosheaves on diffeological spaces by cosheaves on the site of plots. This provides a framework to describe diffeological objects such as internal tangent bundles, the Poincar'{e} groupoids, and furthermore, homology theories such as cubic homology in diffeology by the language of cosheaves. We show that every cosheaf on a diffeological space induces a cosheaf in terms of t...
متن کامل